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Abstract. This overview paper reviews numerical methods for solution of
optimal control problems in real-time, as they arise in nonlinear model pre-
dictive control (NMPC) as well as in moving horizon estimation (MHE).
In the first part, we review numerical optimal control solution methods,
focussing exclusively on a discrete time setting. We discuss several algorith-
mic ”building blocks” that can be combined to a multitude of algorithms.
We start by discussing the sequential and simultaneous approaches, the first
leading to smaller, the second to more structured optimization problems. The
two big families of Newton type optimization methods, Sequential Quadratic
Programming (SQP) and Interior Point (IP) methods, are presented, and
we discuss how to exploit the optimal control structure in the solution of the
linear-quadratic subproblems, where the two major alternatives are “condens-
ing” and band structure exploiting approaches. The second part of the paper
discusses how the algorithms can be adapted to the real-time challenge of
NMPC and MHE. We recall an important sensitivity result from parametric
optimization, and show that a tangential solution predictor for online data
can easily be generated in Newton type algorithms. We point out one impor-
tant difference between SQP and IP methods: while both methods are able to
generate the tangential predictor for fixed active sets, the SQP predictor even
works across active set changes. We then classify many proposed real-time
optimization approaches from the literature into the developed categories.
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1 Introduction

Nonlinear optimal control algorithms are at the core of all nonlinear MPC
or moving horizon estimation (MHE) schemes. In contrast to linear MPC,
where convex quadratic programs are mostly solved exactly at each sampling
time, nonlinear MPC faces a dilemma: either the nonlinear iteration proce-
dure is performed until a pre-specified convergence criterion is met, which
might introduce considerable feedback delays, or the procedure is stopped
prematurely with only an approximate solution, so that a pre-specified com-
putation time limit can be met. Fortunately, considerable progress has been
achieved in the last decade that allows to reduce both, computational delays
and approximation errors. This progress would not have been possible by
using just off-the-shelf optimal control codes; it is the development of ded-
icated real-time optimization algorithms for NMPC and MHE that allows
to nowadays apply NMPC to plants with tens of thousands of states or to
mechatronic applications.

While several excellent numerical optimization textbooks exist [25, 28, 44],
in the field of numerical optimal control there are only a few [2, 11], and when
it comes to real-time optimal control algorithms there is even less overview
material [5]. The aim of the present article is to help closing this gap and to
summarize the state-of-the-art in this field by presenting those algorithmic
ideas that appear to be crucial to the authors. We choose a rather simplified
setting, leaving many important special cases aside, in order to present the
major ideas as clearly as possible.

The article is organized as follows: In Section 2 the NMPC and MHE prob-
lems are stated, in Section 3 we review Newton type optimization methods
of different flavor, and in Section 4 we discuss how to exploit the optimal
control structure of the linear equation systems to be solved in each Newton
type iteration. In Section 5 we present online initialization strategies for sub-
sequent NMPC problems, and in Section 6 the online algorithms of different
flavours are discussed, and we finally conclude the paper in Section 7.

2 Problem Formulation

Throughout this paper we regard discrete time dynamical systems augmented
with algebraic equations, as follows:

xk+1 = fk(xk, zk, uk) (1a)
gk(xk, zk, uk) = 0 (1b)

Here, xk ∈ R
nx is the differential state, zk ∈ R

nz the algebraic state, and
uk ∈ R

nu is the control. Functions fk and gk are assumed twice differentiable
and map into R

nx and R
nz , respectively. The algebraic state zk is uniquely

determined by (1b) when xk and uk are fixed, as we assume that ∂gk

∂z is
invertible everywhere.
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We choose to regard this difference-algebraic system form because it cov-
ers several parametrization schemes for continuous time dynamic systems
in differential algebraic equation (DAE) form, in particular direct multiple
shooting with DAE relaxation [39] and direct collocation [3, 59]. Note that
in the case of collocation, all collocation equations on a collocation interval
would be collected within the function gk and the collocation node values in
the variables zk.

2.1 NMPC Optimal Control Problem

Based on this dynamic system form, we regard the following simplified opti-
mal control problem in discrete time:

minimize
x, z, u

N−1∑

i=0

Li(xi, zi, ui) + E (xN ) (2a)

subject to x0 − x̄0 = 0, (2b)
xi+1 − fi(xi, zi, ui) = 0, i = 0, . . . , N − 1, (2c)

gi(xi, zi, ui) = 0, i = 0, . . . , N − 1, (2d)
hi(xi, zi, ui) ≤ 0, i = 0, . . . , N − 1, (2e)

r (xN ) ≤ 0. (2f)

Here, the free variables are the differential state vector x =
(xT

0 , xT
1 . . . , xT

N−1, x
T
N )T at all considered time points and the algebraic and

control vector on all but the last time points: z = (zT
0 , zT

1 . . . , zT
N−1)

T and
u = (uT

0 , uT
1 . . . , uT

N−1)
T .

Remark on fixed and free parameters: In most NMPC applications there
are some constant parameters p̄ that are assumed constant for the NMPC
optimization, but that change for different problems, like x̄0. We do not regard
them here for notational convenience, but note that they can be regarded as
constant system states with fixed initial value p̄. In some NMPC applications
free parameters p exist that are part of the optimization variables, but that
are – in contrast to the controls uk – constant in time. Again, we disregard
this case for notational simplicity.

2.2 Moving Horizon Estimation: Nearly a Dual
Problem

For moving horizon estimation (MHE), see e.g. [21, 48, 65], we typically
choose convex functions to penalize the mismatch between the real mea-
surements yk and the corresponding model predictions mk(xk, zk, uk, wk).
For notational simplicity, we regard only weighted Euclidean norms here,
‖yk − mk(xk, zk, uk, wk)‖2

Q, but point out that it is often useful to regard
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other penalty functions like e.g. the �1 penalty, which necessitate slight adap-
tations in the numerical solution algorithms presented later. The controls uk

are here regarded as fixed and known and enter the system dynamics only as
constant but time varying parameters. However, time varying disturbances
wk are often introduced in the MHE problem to account for plant-model mis-
match. They take the same role as the controls in the NMPC problem and
are often �2 penalized.

minimize
x, z, w

‖x0 − x̄0‖2
P +

N−1∑

i=0

‖yi − mi(xi, zi, ui, wi)‖2
Q + ‖wi‖2

R (3a)

subject to
xi+1 − fi(xi, zi, ui, wi) = 0, i = 0, . . . , N − 1, (3b)

gi(xi, zi, ui, wi) = 0, i = 0, . . . , N − 1, (3c)
hi(xi, zi, ui, wi) ≤ 0, i = 0, . . . , N − 1, (3d)

Due to the fact that the MHE problem has the same optimal control structure
as the NMPC problem, they are often called “dual” to each other, in a slight
abuse of terminology. However, the starkest contrast to the NMPC problem
is the fact that the MHE problem has a free initial value x0 and often has
a much higher dimensional “control vector” wk. This necessitates possibly
different linear algebra solvers in the solution procedures described below.

2.3 Sequential vs. Simultaneous Optimal Control

For simplicity of presentation, we will in this subsection only focus on the
NMPC problem (2a)-(2f). Here, the equality constraints (2b)-(2d) uniquely
determine the variables x and z if the vector u is fixed. Thus, they can
be inverted to yield the implicit functions x̃(u) and z̃(u) that satisfy (2b)-
(2d) for all u, by a system simulation. It allows to reduce the optimization
problem to

minimize
u

N−1∑

i=0

Li(x̃i(u), z̃i(u), ui) + E (x̃N (u)) (4a)

subject to hi(x̃i(u), z̃i(u), ui) ≤ 0, i = 0, . . . , N − 1, (4b)
r (x̃N (u)) ≤ 0. (4c)

This problem has a strongly reduced variable space compared to the original
problem, and it is thus an appealing idea to use the reduced problem within an
optimization procedure. This gives rise to the so called “sequential” approach
to optimal control problems, where in each optimization iteration the two
steps, system simulation and optimization, are performed sequentially, one
after the other. This approach emerged early in the nonlinear optimal control
literature [50].
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In contrast to the sequential approach, the so called “simultaneous”
approach addresses the full nonlinear program as stated above in (2a)-(2f)
directly by a Newton type optimization algorithm, i.e., optimization and
simulation are performed simultaneously. It comes in the form of direct collo-
cation methods [3, 59, 64] as well as in form of direct multiple shooting [9, 39].

The optimization problem of the sequential approach has much less vari-
ables, but also less structure in the linear subproblems than the simultaneous
approach (an interesting structure preserving sequential algorithm was how-
ever presented in [58]). Even more important, the Newton type optimization
procedure behaves quite differently for both approaches: typically, faster local
convergence rates are observed for the simultaneous approach, in particular
for unstable or highly nonlinear systems, because – intuitively speaking – the
nonlinearity is equally distributed over the nodes.

3 Newton Type Optimization

Newton’s method for solution of a nonlinear equation R(W ) = 0 starts with
an initial guess W 0 and generates a series of iterates W k that each solves a
linearization of the system at the previous iterate, i.e., for given W k the next
iterate W k+1 shall satisfy R(W k) + ∇R(W k)T (W k+1 − W k) = 0. The hope
is that the linearizations – that can be solved w.r.t. W k+1 by standard linear
algebra tools – are sufficiently good approximations of the original nonlin-
ear system and that the iterates converge towards a solution W ∗. Newton’s
method has locally a quadratic convergence rate, which is as fast as making
any numerical analyst happy. If the Jacobian ∇R(W k)T is not computed
or inverted exactly, this leads to slower convergence rates, but cheaper it-
erations, and gives rise to the larger class of “Newton type methods”. An
excellent overview of the field is given in [13]. But how are these ideas gen-
eralized to nonlinear optimization?

The NMPC and MHE problems as stated above are specially structured
cases of a generic nonlinear program (NLP) that has the form

minimize
X

F (X) s.t.
{

G(X) = 0
H(X) ≤ 0 (5)

Under mild assumptions, any locally optimal solution X∗ of this problem
has to satisfy the famous Karush-Kuhn-Tucker (KKT) conditions: there exist
multiplier vectors λ∗ and μ∗ so that the following equations hold:

∇XL(X∗, λ∗, μ∗) = 0 (6a)
G(X∗) = 0 (6b)

0 ≥ H(X∗) ⊥ μ∗ ≥ 0. (6c)



396 M. Diehl et al.

Here we have used the definition of the Lagrange function

L(X, λ, μ) = F (X) + G(X)T λ + H(X)T μ (7)

and the symbol ⊥ between the two vector valued inequalities in Eq. (6c)
states that also the complementarity condition

Hi(X∗) μ∗
i = 0, i = 1, . . . , nH , (8)

shall hold. All Newton type optimization methods try to find a point satis-
fying these conditions by using successive linearizations of the problem func-
tions. Major differences exist, however, on how to treat the last condition (6c)
that is due to the inequality constraints, and the two big families are Sequen-
tial Quadratic Programming (SQP) type methods and Interior Point (IP)
methods.

3.1 Sequential Quadratic Programming

A first variant to iteratively solve the KKT system is to linearize all non-
linear functions appearing in Eqs. (6a)–(6c). It turns out that the resulting
linear complementarity system can be interpreted as the KKT conditions of
a quadratic program (QP)

minimize
X

F k
QP(X) s.t.

{
G(Xk) + ∇G(Xk)T (X − Xk) = 0
H(Xk) + ∇H(Xk)T (X − Xk) ≤ 0 (9)

with objective function

F k
QP(X) = ∇F (Xk)T X +

1
2
(X − Xk)T∇2

XL(Xk, λk, μk)(X − Xk). (10)

In the case that the so called Hessian matrix ∇2
XL(Xk, λk, μk) is positive semi-

definite, this QP is convex so that global solutions can be found reliably. This
general approach to address the nonlinear optimization problem is called Se-
quential Quadratic Programming (SQP). Apart from the presented ”exactHes-
sian” SQP variant presented above, several other – and much more widely used
– SQP variants exist, that make use of inexact Hessian or Jacobian matrices.

3.1.1 Powell’s Classical SQP Method

One of the most successfully used SQP variants is due to Powell [47]. It uses
exact constraint Jacobians, but replaces the Hessian matrix ∇2

XL(Xk, λk, μk)
by an approximation Ak. Each new Hessian approximation Ak+1 is ob-
tained from the previous approximation Ak by an update formula that uses
the difference of the Lagrange gradients, γ = ∇XL(Xk+1, λk+1, μk+1) −
∇XL(Xk, λk+1, μk+1) and the step σ = Xk+1 − Xk. Aim of these
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”Quasi-Newton” or ”Variable-Metric” methods is to collect second order
information in Ak+1 by satisfying the secant equation Ak+1σ = γ. The
most widely used update formula is the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update Ak+1 = Ak +γγT /(γT σ)−AkσσT Ak/(σT Akσ), see e.g. [44].
Quasi-Newton methods can be shown to converge superlinearly under mild
conditions, and had a tremendous impact in the field of nonlinear optimiza-
tion. Successful implementations are the packages NPSOL and SNOPT for
general NLPs [27], and MUSCOD-II [39] for optimal control. Note that in
this paper we omit all discussion on the usually crucial issue of globalisation
strategies, because these are less important in online optimization.

3.1.2 Constrained Gauss-Newton Method

Another particularly successful SQP variant – the Constrained (or General-
ized) Gauss-Newton method – is also based on approximations of the Hessian.
It is applicable when the objective function is a sum of squares:

F (X) =
1
2
‖R(X)‖2

2. (11)

In this case, the Hessian can be approximated by

Ak = ∇R(Xk)∇R(Xk)T (12)

and the corresponding QP objective is easily seen to be

F k
QP(X) =

1
2
‖R(Xk) + ∇R(Xk)T (X − Xk)‖2

2 (13)

The constrained Gauss-Newton method has only linear convergence but often

with a surprisingly fast contraction rate. The contraction rate is fast when the
residual norm ‖R(X∗)‖ is small or the problem functions R, G, H have small
second derivatives. It has been developed and extensively investigated by
Bock and coworkers, see e.g. [6, 53]. The constrained Gauss-Newton method
is implemented in the packages PARFIT [6], FIXFIT [53], and also as one
variant within MUSCOD-II [14, 39].

Remark on adjoint based SQP variants: Newton type SQP methods
may not only use an approximation of the Hessian, but also of the con-
straint Jacobians. The most general formulation including inexact inequali-
ties, which is originally due to [7] and was analysed in [61], uses approxima-
tions Ak, Bk, Ck of the matrices ∇2

XL(·),∇G(Xk),∇H(Xk), and a so called
“modified gradient”

ak = ∇XL(Xk, λk, μk) − Bkλk − Ckμk (14)
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in the QP objective

F k
adjQP(X) = aT

k X +
1
2
(X − Xk)T Ak(X − Xk). (15)

The following QP is solved in each iteration:

minimize
X

F k
adjQP(X) s.t.

{
G(Xk) + BT

k (X − Xk) = 0
H(Xk) + CT

k (X − Xk) ≤ 0.
(16)

It can be shown that using a modified gradient ak allows to locally converge
to solutions of the original nonlinear NLP even in the presence of inexact
inequality constraint Jacobians [7, 20, 61]. A crucial ingredient of the ad-
joint based SQP scheme is the fact that the Lagrange gradient needed for ak

in (14) can be evaluated efficiently by adjoint based techniques or, equiva-
lently, by the reverse mode of automatic differentiation [30]. Adjoint based
SQP schemes are at the core of the multi-level real-time iterations described
in Section 6.1. Even quasi Newton update schemes can be used in order to
approximate the Jacobians [32].

3.2 Interior Point Methods

In contrast to SQP methods, an alternative way to address the solution of
the KKT system is to replace the last nonsmooth KKT condition in Eq. (6c)
by a smooth nonlinear approximation, with τ > 0:

∇XL(X∗, λ∗, μ∗) = 0 (17a)
G(X∗) = 0 (17b)

Hi(X∗) μ∗
i = τ, i = 1, . . . , nH . (17c)

This system is then solved with Newton’s method. The obtained solution is
not a solution to the original problem, but to the problem

minimize
X

F (X) − τ

nH∑

i=1

log(−Hi(X)) s.t. G(X) = 0. (18)

Thus, the solution is in the interior of the set described by the inequality
constraints, and closer to the true solution the smaller τ gets. The crucial
feature of the family of “interior point methods” is the fact that, once a
solution for a given τ is found, the parameter τ can be reduced by a constant
factor without jeopardising convergence of Newton’s method. After only a
limited number of Newton iterations a quite accurate solution of the original
NLP is obtained. We refer to the excellent textbooks [10, 63] for details.
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A widely used implementation of nonlinear Interior Point methods is the
open source code IPOPT [60].

Remark on the structure of the linear subproblems: It is interesting
to note that the linearization of the smoothed KKT system (17a)-(17c) is
a linear system that is equivalent – after elimination of the variable μk+1

– to the KKT conditions of an equality constrained quadratic program. It
is important to remark that most structure exploiting features of SQP type
methods also have an equivalent in IP methods, like globalisation strategies,
use of adjoints, structure preserving linear algebra, etc., and we will mention
them when applicable.

Remark on Ohtsuka’s inequality treatment: An interesting treatment of
inequality constraints that is similar to interior point methods was proposed
and successfully used in the context of NMPC by Ohtsuka [45]. He proposes
to approximate the inequality constrained NLP (5) by a formulation

minimize
X, Y

F (X) − τ

nH∑

i=1

Yi s.t.
{

G(X)=0
Hi(X) + Y 2

i =0, i = 1, . . . , nH .
(19)

which is equivalent to

minimize
X

F (X) − τ

nH∑

i=1

√
−Hi(X) s.t. G(X) = 0. (20)

This barrier is not self-concordant and does not connect easily to the dualtiy
theory of interior-point methods, but we will nevertheless call this approach
a variant of IP methods in this paper.

4 Numerical Optimal Control

When Newton type optimization strategies are applied to the optimal con-
trol problem (2a)-(2f), the first question is, if a simultaneous or a sequential
approach is used. In the case of a sequential approach, where all state vari-
ables x, z are eliminated and the optimization routine only sees the control
variables u, the specific optimal control problem structure plays a minor
role. Thus, often an off-the-shelf code for nonlinear optimization can be used.
This makes practical implementation very easy and is a major reason why the
sequential approach is used by many practitioners. It is in strong contrast to
the simultaneous approach, that addresses the optimal control problem (2a)-
(2f) in the full variable space x, z, u, and thus allows – and necessitates –
to exploit the specific problem structure. In all Newton type optimization
routines there are two crucial and often costly computational steps, namely
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(a) Derivative Computation and (b) Solution of the Quadratic Subproblems.
In both areas, specific structures can be exploited. In this paper we will focus
on (b), the solution of the QPs, but add suitable remarks on how to treat
derivative computations when necessary.

4.1 The Linearized Optimal Control Problem

Let us regard the linearization of the optimal control problem (2a)-(2f) within
an SQP method, which is a structured QP. It turns out that due to the dy-
namic system structure the Hessian of the Lagrangian function has the same
separable structure as the Hessian of the original objective function (2a),
so that the quadratic QP objective is still representable as a sum of linear-
quadratic stage costs, which was first observed by Bock and Plitt [9]. Thus,
the QP subproblem has the following form, where we left out the SQP it-
eration index k for notational simplicity, and where the summands of the
objective each are linear-quadratic.

minimize
x, z, u

N−1∑

i=0

LQP,i(xi, zi, ui) + EQP (xN ) (21a)

subject to x0 − x̄0 = 0, (21b)
xi+1 − f ′

i − F x
i xi − F z

i zi − Fu
i ui = 0, i = 0, . . . , N − 1, (21c)

g′i + Gx
i xi + Gz

i zi + Gu
i ui = 0, i = 0, . . . , N − 1, (21d)

h′
i + Hx

i xi + Hz
i zi + Hu

i ui ≤ 0, i = 0, . . . , N − 1, (21e)
r′ + RxN ≤ 0. (21f)

When the linear algebra within the QP solution is concerned, the dynamic
system structure can be exploited in different ways.

Remark on high rank Hessian updates: The fact that the Hessian matrix
of the optimal control problem is block diagonal does not only allow to write
down the objective (21a) in a separable form and exploit this sparsity in the
linear algebra; when quasi Newton Hessian update methods are used, it also
allows to perform “partitioned variable metric” or “high rank updates” of
the Hessian, by updating all Hessian blocks separately [9, 31].

4.2 Elimination of Algebraic Variables

We consider now several algorithmic building blocks helping to solve the QP
problem (21a)-(21f). Let us first regard Eq. (21d). Due to our assumptions in
the problem statement of (2a)-(2f), we know that the Jacobian matrix Gz

i is
invertible. Thus, Eq. (21d) can directly be inverted by a factorization of the
matrix Gz

i , yielding an explicit expression for zi:

zi = − (Gz
i )

−1 [g′i + Gx
i xi + Gu

i ui] (22)
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Note that the matrix Gz
i is often sparse and might best be factorized by a

direct sparse solver. Once this factorization is performed, it is possible to
reduce problem (21a)-(21f) to a smaller scale QP in the variables x and u
only, which has the following form:

minimize
x, u

N−1∑

i=0

LredQP,i(xi, ui) + EQP (xN ) (23a)

subject to x0 − x̄0 = 0, (23b)
xi+1 − ci − Aixi − Biui = 0, i = 0, . . . , N − 1, (23c)

h̄i + H̄x
i xi + H̄u

i ui ≤ 0, i = 0, . . . , N − 1, (23d)
r′ + RxN ≤ 0. (23e)

This partially reduced QP can be post-processed either by a condensing or a

band structure exploiting strategy.

Remark on Leineweber’s Partially Reduced SQP Method: In the
context of a direct multiple shooting method, the evaluation of the Jacobian
matrices F x

i , F z
i , Fu

i in (21c) is a very CPU intensive step. Given the fact
that finally only the reduced matrices Ai and Bi are needed in the reduced
QP, Leineweber [39] proposed a partially reduced SQP method that never
computes the matrices needed in the QP (21a)-(21f). Instead, it first performs
the sparse matrix factorization of Gz

i needed for elimination of the variables
zi via Eq. (22), and then it computes the matrices Ai and Bi directly as
directional derivatives of fi(xi, zi, ui):

Ai =
∂fi(·)

∂(x, z, u)

⎡

⎣
I

− (Gz
i )

−1 Gx
i

0

⎤

⎦ and Bi =
∂fi(·)

∂(x, z, u)

⎡

⎣
0

− (Gz
i )

−1 Gu
i

I

⎤

⎦ . (24)

This allows to reduce the computational burden significantly in case of many
algebraic variables zi and expensive evaluation of fi.

4.3 Condensing

In order to see how the variable space of a QP can be reduced further in a very
simple way, let us recall that it was possible to reduce the large scale NLP
via a nonlinear system simulation in the sequential approach. The basic idea
of the ”condensing” approach that was first proposed by Bock and Plitt [9]
is to use the same fact, but apply it only to the linearized dynamic system.
For this aim let us note that Eqs. (23b) and (23c) describe nothing else than
a linear time varying discrete time system, and that for fixed u the values
for x can easily be obtained by a forward simulation of the linear dynamics.
Hence, the vector x is completely determined by the vector u and the given
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initial state x̄0. Therefore, the states can be eliminated from the linearized
problem resulting in a smaller, but dense quadratic program of the form

minimize
u

fcondQP,i(x̄0, u) (25a)

subject to r̄ + R̄x0 x̄0 + R̄uu ≤ 0. (25b)

Here, the inequalities (25b) contain both types of the original inequali-
ties, (23d) and (23e), in “condensed” form. If the dimension of the vector
u = (uT

0 , uT
1 , . . . , uT

N−1)
T is not too large, this QP can be solved fast using

dense general purpose QP solvers. By doing so, the cost of solving one QP
subproblem grows with O(N3n3

u), i.e. cubically with the horizon length N .

Remark on Schlöder’s Reduction Trick: In the context of direct multi-
ple shooting methods, the generation of the matrices Ai and Bi in (23c) is
expensive if the differential state dimension nx is large. It needs O(N(nx +
nu)) stage wise directional derivatives. We might instead, as in Leineweber’s
partially reduced SQP method, directly compute the quantities needed in
the objective and the constraints of the condensed QP (25a)-(25b). This idea
was first proposed by Schlöder [53], in the context of the Generalized Gauss-
Newton method. The method is implemented in the codes FIXFIT [53] and
MSOPT [52]. It is only advantageous for large state but small control dimen-
sions (nu � nx), and it exploits the fact that the initial value x0 is fixed
in the NMPC problem. Thus, it offers no advantages in the MHE problem
where the initial value is free for optimization.

4.4 Band Structure Exploiting Riccati Based
Solutions

Instead of condensing the linearized problem, one can opt to keep the con-
straints (23b) and (23c) and the variables x as unknowns in the QP. To sketch
the idea, let us regard a QP without the inequalities (23d) and (23e). The
KKT conditions of this equality constrained QP (23a)-(23c) in the primal
and dual variables w = (λT

0 , xT
0 , uT

0 , λT
1 , xT

1 , uT
1 , . . . , λT

N , xT
N )T are a symmet-

ric linear system Mw = b with KKT matrix

M =

⎡

⎢⎢⎢⎢⎢⎣

I

I Q0 S0 −AT
0

ST
0 R0 −BT

0

−A0 −B0
. . . I

I QN

⎤

⎥⎥⎥⎥⎥⎦
(26)

The almost block diagonal structure of this linear system allows it to be
efficiently factorized by a (discrete time) Riccati recursion. This was shown for
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optimal control problems within an active set framework in [29] and within an
interior point framework in [56]. For linear model predictive control, Riccati
based solutions are described in [35, 49]. The cost of this factorization, which
is usually dominating the cost for solving the QP, is O(N(nx + nu)3). The
cost grows only linearly with the horizon length N , in contrast to condensing
with its cubic growth O(N3n3

u). This makes the Riccati method favorable for
larger horizon lengths N and when nx ≈ nu. A Riccati based factorization is
particularly advantageous for the MHE problem where the dimension of the
“controls” w is typically as big as the state dimension.

Remark on direct or iterative sparse solvers: Note that it is not nec-
essary to use a Riccati based solution in order to obtain the complexity
O(N(nx + nu)3), but that this can also be achieved by using a direct sparse
solver, as e.g. done in the general purpose and open-source NLP package
IPOPT [60]. Also, iterative linear solvers might be used.

Remark on Tenny’s Feasibility Perturbed SQP Method: An interest-
ing method for optimal control and NMPC was proposed by Tenny, Wright
and Rawlings [58], who regard a simultaneous formulation within an SQP
type framework, but “perturb” the result of each SQP iteration in order to
make the state trajectory consistent, i.e., they close all nonlinear continuity
conditions (2c). This can be done by a simple “open loop” forward simula-
tion of the system given the new controls, or by more complex “closed loop”
simulations. In the open loop variant, this is nearly a sequential approach
and performs, if exact Hessians are used, even the same SQP iterations.
But it differs in one important aspect: it allows to exploit the same sparsity
structure as a simultaneous approach, e.g. full space derivative computation,
Riccati based linear algebra, or high rank updates for the block structured
Hessian [9]. This makes it an interesting cross-over between typical features
of sequential and simultaneous methods.

4.5 A Classification of Optimal Control Methods

It is an interesting exercise to try to classify Newton type optimal control
algorithms. Let us have a look at how nonlinear optimal control algorithms
perform their major algorithmic components, each of which comes in several
variants:

(a) Treatment of Inequalities: Nonlinear IP vs. SQP
(b) Nonlinear Iterations: Simultaneous vs. Sequential
(c) Derivative Computations: Full vs. Reduced
(d) Linear Algebra: Banded vs. Condensing

In the last two of these categories, we observe that the first variants each ex-
ploit the specific structures of the simultaneous approach, while the second
variant reduces the variable space to the one of the sequential approach. Note
that reduced derivatives imply condensed linear algebra, so the combination
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[Reduced,Banded] is excluded. In the first category, we might sometimes dis-
tinguish two variants of SQP methods, depending on how they solve their
underlying QP problems, via active set QP solvers (SQP-AS) or via interior
point methods (SQP-IP).

Based on these four categories, each with two alternatives, and one
combination excluded, we obtain seven possible combinations. In these
categories, the classical single shooting method [50] could be classified
as [SQP,Sequential,Reduced] or as [SQP,Sequential,Full,Condensing] be-
cause some variants compute directly the reduced derivatives R̄u in (25b),
while others compute first the matrices Ai and Bi in (23c) and con-
dense then. Tenny’s feasibility perturbed SQP method [58] could be
classified as [SQP,Sequential,Full,Banded], and Bock’s multiple shooting [9]
as well as the classical reduced SQP collocation methods [2, 3, 59] as
[SQP,Simultaneous,Full,Condensing]. The band structure exploiting SQP
variants from Steinbach [56] and Franke [26] are classified as [SQP-
IP,Simultaneous,Full,Banded], while the widely used interior point direct col-
location method in conjunction with IPOPT by Biegler and Wächter [60]
as [IP,Simultaneous,Full,Banded]. The reduced Gauss-Newton method of
Schlöder [53] would here be classified as [SQP,Simultaneous,Reduced].

5 Online Initialization and NLP Sensitivities

For exploiting the fact that NMPC requires the solution of a whole sequence
of ”neighboring” NLPs and not just a number of stand-alone problems, we
have first the possibility to initialize subsequent problems efficiently based
on previous information. In this section we introduce several concepts for
such initializations, in particular the important concept of NLP sensitivities.
On the other hand, in Section 6 we will give an overview of specially tai-
lored online algorithms for approximately solving each NLP, that deliver on
purpose inaccurate solutions and postpone calculations from one problem to
the next.

5.1 Shift Initialization

A first and obvious way to transfer solution information from one solved
NMPC problem to the initialization of the next one is based on the principle
of optimality of subarcs, also called the dynamic programming principle. It
states the following: Let us assume we have computed an optimal solution
(x∗

0, z
∗
0 , u∗

0, x
∗
1, z

∗
1 , u∗

1, . . . , x
∗
N ) of the NMPC problem (2a)-(2f) starting with

initial value x̄0. If we regard a shortened NMPC problem without the first
interval, which starts with the initial value x̄1 chosen to be x∗

1, then for this
shortened problem the vector (x∗

1, z
∗
1 , u∗

1, . . . , x
∗
N ) is the optimal solution.

Based on the expectation that the measured or observed true initial value
for the shortened NMPC problem differs not much from x∗

1 – i.e. we believe



Efficient Numerical Methods for Nonlinear MPC and MHE 405

our prediction model and expect no disturbances – this “shrinking” horizon
initialization is canonical, and it is used in MPC of batch or finite time
processes, see e.g. [15, 34].

However, in the case of moving (finite) horizon problems, the horizon is
not only shortened by removing the first interval, but also prolonged at the
end by appending a new terminal interval – i.e. the horizon is moved forward
in time. In the moving horizon case, the principle of optimality is thus not
strictly applicable, and we have to think about how to initialize the appended
new variables zN , uN , xN+1. Often, they are obtained by setting uN := uN−1

or setting uN as the steady state control. The states zN and xN+1 are then
obtained by forward simulation. This transformation of the variables from one
problem to the next is called “shift initialization”. It is not as canonical as the
“shrinking horizon” case, because the shifted solution is not optimal for the
new undisturbed problem. However, in the case of long horizon lengths N we
can expect the shifted solution to be a good initial guess for the new solution.
Moreover, for most NMPC schemes with stability guarantee (for an overview
see e.g. [42]) there exists a canonical choice of uN that implies feasibility (but
not optimality) of the shifted solution for the new, undisturbed problem. The
shift initialization is very often used e.g. in [4, 19, 41, 43].

A comparison of shifted vs. non-shifted initializations was performed in [8]
with the result that for autonomous NMPC problems that shall regulate a
system to steady state, there is usually no advantage of a shift initialization
compared to the “primitive” warm start initialization that leaves the vari-
ables at the previous solution. In the extreme case of short horizon lengths,
it turns out to be even advantageous NOT to shift the previous solution,
as subsequent solutions are less dominated by the initial values than by the
terminal conditions. On the other hand, shift initialization are a crucial pre-
requisite in periodic tracking applications [19] and whenever the system or
cost function are not autonomous.

5.2 Parametric Sensitivities

In the shift initialization discussed above we did assume that the new ini-
tial value corresponds to the model prediction. This is of course never the
case, because exactly the fact that the initial state is subject to disturbances
motivates the use of MPC. By far the most important change from one opti-
mization problem to the next one are thus the unpredictable changes in the
initial value. Is there anything we can do about this in the initialization of a
new problem?

It turns out that we can, if we use the concept of parametric NLP sensitiv-
ities to construct a new initial guess. To illustrate the idea, let us first regard
the parametric root finding problem R(x̄0, W ) = 0 that results from the nec-
essary optimality conditions of an IP method, i.e. the system (17a)–(17c) in
variables W = (X, λ, μ). In the NMPC context, this system depends on the
uncertain initial value x̄0. We denote the solution manifold by W ∗(x̄0). When
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W ∗

x0

(a) Linearizing at approximate solution

W ∗

x0

(b) Linearizing at active set change

Fig. 1 Tangential predictors for interior point method using a small τ

W ∗

x0

(a) Linearizing at approximate solution

W ∗

x0

(b) Linearizing at active set change

Fig. 2 Tangential predictors for interior point method using a larger τ

we know the solution W = W ∗(x̄0) for a previous initial value x̄0 and want to
compute the solution for a new initial value x̄′

0, then a good solution predic-
tor for W ∗(x̄′

0) is provided by W ′ = W + dW∗
dx̄0

(x̄0)(x̄′
0 − x̄0) where dW∗

dx̄0
(x̄0) is

given by the implicit function theorem. An important practical observation
is that an approximate tangential predictor can also be obtained when it is
computed at a point W that does not exactly lie on the solution manifold.
This more general predictor is given by the formula

W ′ = W −
(

∂R

∂W
(x̄0, W )

)−1 [
∂R

∂x̄0
(x̄0, W )

(
x̄′

0 − x̄0

)
+ R(x̄0, W )

]
. (27)

This fact, that is illustrated in Fig. 1(a), and that leads to a combination
of a predictor and corrector step in one linear system, is exploited in the
continuation method by Ohtsuka [45] and in a generalized form in the real-
time iteration scheme [16], both described below. When R(x̄0, W ) = 0 the
formula simplifies to the tangential predictor of the implicit function theorem,
which is e.g. employed in the advanced step controller[64].

Remark on IP Sensitivities at Active Set Changes: Unfortunately,
the interior point solution manifold is strongly nonlinear at points where the
active set changes, and the tangential predictor is not a good approximation
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when we linearize at such points, as visualized in Fig. 1(b). One remedy
would be to increase the path parameter τ , which decreases the nonlinearity,
but comes at the expense of generally less accurate IP solutions. This is
illustrated in Figs. 2(a) and 2(b) for the same two linearization points as
before. In Fig. 2(b) we see that the tangent is approximating the IP solution
manifold well in a larger area around the linearization point, but that the IP
solution itself is more distant to the true NLP solution.

5.3 Generalized Tangential Predictors via SQP
Methods

In fact, the true NLP solution is not determined by a smooth root find-
ing problem (17a)–(17c), but by the KKT conditions (6a)–(6c). It is a well-
known fact from parametric optimization, cf. [33], that the solution manifold
has smooth parts when the active set does not change (and bifurcations are
excluded), but that non-differentiable points occur whenever the active set
changes. Is there anything we can do in order to “jump” over these non-
smooth points in a way that delivers better predictors than the IP predictors
discussed before?

In fact, at points with weakly active constraints, we have to regard di-
rectional derivatives of the solution manifold, or “generalized tangential pre-
dictors”. These can be computed by suitable quadratic programs [33, Thm
3.3.4] and are visualized in Fig. 3(b). The theoretical results can be made a
practical algorithm by the following procedure proposed in [14]: first, we have
to make sure that the parameter x̄0 enters the NLP linearly, which is auto-
matically the case for simultaneous optimal control formulations, cf. Eq. (2b).
Second, we address the problem with an exact Hessian SQP method. Third,
we just take our current solution guess W for a problem x̄0, and then solve
the QP subproblem (21a)–(21f) for the new parameter value x̄′

0, but initial-
ized at W . It can be shown [14, Thm. 3.6] that this “initial value embedding”
procedure delivers exactly the generalized tangential predictor when started

W ∗

x0

(a) Linearizing at approximate solution

W ∗

x0

(b) Linearizing at active set change

Fig. 3 Generalized tangential predictors for SQP method
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at a solution W = W ∗(x̄0), as in Fig. 3(b). It is important to remark that the
predictor becomes approximately tangential when (a) we do not start on the
solution manifold, see Fig. 3(a), or (b) we do not use an exact Hessian or Ja-
cobian matrix or (c) we do not evaluate the Lagrange gradient or constraint
residuals exactly.

6 Online Algorithms

In NMPC and MHE we would dream to have the solution to a new optimal
control problem instantly, which is impossible due to computational delays.
Several ideas help to deal with this issue, which we discuss before explaining
in detail several of the existing online algorithms. We focus on the NMPC
problem but remark that all ideas are also transferable to the MHE problem,
which we sometimes mention explicitly.

Offline precomputations: As consecutive NMPC problems are similar,
some computations can be done once and for all before the controller starts.
In the extreme case, this leads to an explict precomputation of the NMPC
control law that has raised much interest in the linear MPC community [1], or
a solution of the Hamilton-Jacobi-Bellman Equation, both of which are pro-
hibitive for state and parameter dimensions above ten. But also when online
optimization is used, code optimization for the model routines is often essen-
tial, and it is in some cases even possible to precompute and factorize Hessians
or even Jacobians in Newton type Optimization routines, in particular in the
case of neighboring feedback control along reference trajectories [12, 37].

Delay compensation by prediction: When we know how long our com-
putations for solving an NMPC problem will take, it is a good idea not to
address a problem starting at the current state but to simulate at which state
the system will be when we will have solved the problem. This can be done
using the NMPC system model and the open-loop control inputs that we will
apply in the meantime [24]. This feature is used in many practical NMPC
schemes with non-negligible computation time.

Division into preparation and feedback phase: A third ingredient of
several NMPC algorithms is to divide the computations in each sampling
time into a preparation phase and a feedback phase [16]. The more CPU
intensive preparation phase (a) is performed with an old predicted state x̄0

before the new state estimate, say x̄′
0, is available, while the feedback phase

(b) then delivers quickly an approximate solution to the optimization problem
for x̄′

0. Often, this approximation is based on one of the tangential predictors
discussed in the previous section.

Iterating while the problem changes: A fourth important ingredient of
some NMPC algorithms is the idea to work on the optimization problem while
it changes, i.e., to never iterate the Newton type procedure to convergence
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for an NMPC problem getting older and older during the iterations, but to
rather work with the most current information in each new iteration. This
idea is used in [16, 41, 45].

6.1 A Survey of Online Optimization for NMPC

We will in the following review several of the approaches suggested in the
literature, in a personal and surely incomplete selection, and try to classify
them along the algorithmic lines discussed in this paper.

The Newton-Type Controller of Li and Biegler [40]: This was probably
one of the first true online algorithms for NMPC. It is based on a sequential
optimal control formulation, thus it iterated in the space of controls u =
(u0, u1, . . . , uN−1) only. It uses an SQP type procedure with Gauss-Newton
Hessian and line search, and in each sampling time, only one SQP iteration
is performed. The transition from one problem to the next uses a shift of
the controls unew = (u1, . . . , uN−1, u

new
N ). The result of each SQP iterate is

used to give an approximate feedback to the plant. As a sequential scheme
without tangential predictor, it seems to have had sometimes problems with
nonlinear convergence, though closed-loop stability was proven for open-loop
stable processes [41], and in principle, the theoretical NMPC stability analysis
from [18] is applicable.

The Continuation/GMRES Method of Ohtsuka [45]: Similar to the
Newton-Type controller, the Continuation/GMRES method performs only
one Newton type iteration in each sampling time, and is based on a sequential
formulation. It is different in that it is based on an IP treatment of the
inequalities with fixed path parameter τ > 0, see Section 3.2, that it uses an
exact Hessian, and that it uses the iterative GMRES method for linear system
solution in each Newton step. Most important, it makes no use of a shift, but
instead use of the tangential predictor described in Eq. (27). This features
seems to allow it to follow the nonlinear IP solution manifold well – which
is strongly curved at active set changes. For a visualization, see Fig. 4(a). In
each sampling time, only one linear system is built and solved by the GMRES
method, leading to a predictor-corrector pathfollowing method. The closed-
loop stability of the method is in principle covered by the stability analysis for
the real-time iterations without shift given in [17]. A variant of the method
is given in [54], which uses a simultanous approach and condensing and leads
to improved accuracy and lower computational cost in each Newton type
iteration.

The Real-Time Iteration Scheme [16]: Similar to the Newton-Type con-
troller, the real-time iteration scheme presented in [14, 16] performs one
SQP type iteration with Gauss-Newton Hessian per sampling time. How-
ever, it employs a simultaneous NLP parameterization, Bock’s direct multiple
shooting method, with full derivatives and condensing. Moreover, it uses the
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x̄0

(a) Ohtsuka’s C/GMRES method

1

2

3W ∗

x̄0

(b) Real-Time Iteration scheme

Fig. 4 Subsequent solution approximations

generalized tangential predictor of the “initial value embedding” discussed in
Section 5.3 to correct for the mismatch between the expected state x̄0 and the
actual state x̄′

0. In contrast to the C/GMRES method, where the predictor
is based on one linear system solve from Eq. (27), here an inequality con-
strained QP is solved. The computations in each iteration are divided into a
long “preparation phase” (a), in which the system linearization, elimination
of algebraic variables and condensing are performed, as described in Sec-
tions 4.1–4.3, and a much shorter “feedback phase” (b). The feedback phase
solves just one condensed QP (25a)–(25b), more precisely, an “embedded”
variant of it, where the expected state x̄0 is replaced by the actual one, x̄′

0.
Depending on the application, the feedback phase can be several orders of
magnitude shorter than the feedback phase. The iterates of the scheme are
visualized in Fig. 4(b). The same iterates are obtained with a variant of the
scheme that uses Schlöder’s trick for reducing the costs of the preparation
phase in the case of large state dimensions [51]. Note that only one system
linearization and one QP solution are performed in each sampling time, and
that the QP corresponds to a linear MPC feedback along a time varying tra-
jectory. In contrast to IP formulations, the real-time iteration scheme gives
priority to active set changes and works well when the active set changes
faster than the linearized system matrices. In the limiting case of a linear
system model it gives the same feedback as linear MPC. Error bounds and
closed loop stability of the scheme have been established for shrinking horizon
problems in [15] and for NMPC with shifted and non-shifted initializations
in [18] and [17].

Advanced Step Controller by Zavala and Biegler [64]: In order to
avoid the convergence issues of predictor-corrector pathfollowing methods,
in the “advanced step controller” of Zavala and Biegler a more conservative
choice is made: in each sampling time, a complete Newton type IP procedure
is iterated to convergence (with τ → 0). In this respect, it is just like of-
fline optimal control – IP, simultaneous, full derivatives with exact Hessian,
structure exploiting linear algebra. However, two features qualify it as an
online algorithm: first, it takes computational delay into account by solving
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an “advanced” problem with the expected state x̄0 as initial value – similar
as in the real-time iterations with shift – and (b), it applies the obtained
solution not directly, but computes first the tangential predictor which is
correcting for the differences between expected state x̄0 and the actual state
x̄′

0, as described in Eq. (27) with R(W, x̄0) = 0. Note that in contrast to the
other online algorithms, several Newton iterations are performed in part (a)
of each sampling time, the “preparation phase”. The tangential predictor (b)
is computed in the “feedback phase” by only one linear system solve based
on the last Newton iteration’s matrix factorization. As in the C/GMRES
method, the IP predictor cannot “jump over” active set changes as easily as
the SQP based predictor of the real-time iteration. Roughly speaking, the ad-
vanced step controller gives lower priority to sudden active set changes than
to system nonlinearity. As the advanced step controller solves each expected
problem exactly, classical NMPC stability theory [42] can relatively easily be
extended to this scheme [64].

Multi-Level Real-Time Iterations [7]: While the advanced step con-
troller deviates from the other online NMPC schemes in that it performs
many Newton iterations per sampling time, the opposite choice is made in
the multi-level real-time iterations presented in [7], where even cheaper cal-
culations are performed in each sampling time than one Newton step usually
requires. At the lowest level (A), only one condensed QP (25a)–(25b) is
solved, for the most current initial value x̄0. This provides a form of lin-
ear MPC at the base level, taking at least active set changes into account
with a very high sampling frequency. On the next two intermediate levels,
that are performed less often than every sampling time, only the nonlinear
constraint residuals are evaluated (B), allowing for feasibility improvement,
cf. also [12], or the Lagrange gradient is evaluated (C), allowing for optimal-
ity improvement, based on the adjoint based SQP presented in Section 3.1.2.
Note that in all three levels A, B, and C mentioned so far, no new QP ma-
trices are computed and that even system factorizations can be reused again
and again. Level C iterations are still considerably cheaper than one full SQP
iteration [61], but also for them optimality and NMPC closed-loop stability
can be guaranteed by the results in [17] – as long as the system matrices are
accurate enough to guarantee Newton type contraction. Only when this is not
the case anymore, an iteration on the highest level, D, has to be performed,
which includes a full system linearization and is as costly as a usual Newton
type iteration.

Remark on Critical Regions and Online Active Set Strategies: It is
interesting to have a look at the parameter space x̄0 visualized in Fig.5(b).
The picture shows the “critical regions” on each of which the active set in
the solution is stable. It also shows three consecutive problems on a line that
correspond to the scenario used in Figures 4(a), 4(b), and 5(a). Between
problem 1 and 2 there is one active set change, while problems 2 and 3
have the same active set, i.e., are in the same critical region. The C/GMRES
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(a) Solutions of Advanced Step Controller
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(b) Critical regions of a parametric NLP

Fig. 5 Subsequent solution approximations (left), and critical regions (right)

method and Advanced Step Controller exploit the smoothness on each critical
region in order to obtain the conventional Newton predictor that, however,
looses validity when a region boundary is crossed. The real-time iteration
basically “linearizes” the critical regions which then become polytopic, by
using the more accurate, but also more expensive QP predictor.

As the QP cost can become non-negligible for fast MPC applications, a
so-called online active set strategy was proposed in [23]. This strategy goes
on a straight line in the space of linearized regions from the old to the new
QP problem. As long as one stays within one critical region, the QP solution
depends affinely on x̄0 – exactly as the conventional Newton predictor. Only if
the homotopy crosses boundaries of critical regions, the active set is updated
accordingly. The online active set strategy is available in the open-source QP
package qpOASES [22], and is particularly suitable in combination with real-
time iterations of level A, B, and C, where the QP matrices do not change,
see [62].

Remark on Online MHE Algorithms: Many algorithmic NMPC ideas
have been generalized to MHE problems. For example, a Newton-type con-
trol framework was used for MHE in [43], the C/GMRES method in [55],
cf. also [46], the real-time iteration in [21] and [38], and the advanced step
framework in [65]. A somewhat interesting online MHE approach related to
the Newton-type control framework was presented in [36], which uses back-
wards single shooting making it not suitable for stiff systems. Other numerical
MHE schemes were presented in [35] and [57].

7 Conclusions

In this paper we have tried to give a self-contained overview of Newton type
methods for online solution of nonlinear optimal control problems. We first
reviewed several categories in which offline algorithms differ, such as simul-
tanous vs. sequential approaches, Interior Point (IP) vs. Sequential Quadratic
Programming (SQP) methods, band structure exploiting linear algebra
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vs. condensing, and different ways to compute the derivatives needed in New-
ton type iterations. We then categorized several offline approaches along these
lines. The second part started by a discussion of online initializations. We
stressed the importance of sensitivity results from parametric optimization,
which in SQP type frameworks even allow to obtain cheaply a solution pre-
dictor across active set changes. We then classified many proposed real-time
optimization approaches from the literature into the developed categories,
starting with the ”Newton-type controller” [40] and the related ”continuation
method” [45], both based on sequential approaches, and then went over to the
”real-time iteration scheme” [16], a simultaneous approach characterized by
an SQP type solution predictor and iterations that perform only one system
linearization at each sampling time. We also discussed the recently proposed
simultaneous ”advanced step controller” [64] and ”multi-level real-time itera-
tions” [7], as well as fast online QP solutions [23].
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